Degree one Milnor K-invariants of groups of multiplicative type

نویسندگان

چکیده

Let G be a commutative affine algebraic group over field F, and let H:FieldsF→AbGrps functor. A (homomorphic) H-invariant of is natural transformation Tors(−,G)→H, where Tors(−,G) the functor FieldsF→AbGrps taking extension L/F to isomorphism classes GL-torsors Spec(L). The goal this paper compute Invhom1(G,H) H-invariants when multiplicative type, H L×⊗ZQ/Z.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Class Groups of Multiplicative Invariants

Let G be a nite subgroup of GL d (Z). Then G acts on the Laurent polynomial ring kX 1 1 d ] over the eld k via the natural G-action on the multiplicative group generated by the variables X 1 ; : : : ; X d (= Z d). We show that the class group of the ring of invariants of this action is isomorphic to Hom(G=N;k) H 1 (G=D; (Z d) D), where N denotes the subgroup of G that is generated by all reeect...

متن کامل

Finite Type Invariants and Milnor Invariants for Brunnian Links

A link L in the 3-sphere is called Brunnian if every proper sublink of L is trivial. In a previous paper, the first author proved that the restriction to Brunnian links of any Goussarov-Vassiliev finite type invariant of (n + 1)component links of degree < 2n is trivial. The purpose of this paper is to study the first nontrivial case. We show that the restriction of an invariant of degree 2n to ...

متن کامل

A Regulator Formula for Milnor K-groups

The classical Abel–Jacobi map is used to geometrically motivate the construction of regulator maps from Milnor K-groups KM n (C(X)) to Deligne cohomology. These maps are given in terms of some new, explicit (n − 1)-currents, higher residues of which are defined and related to polylogarithms. We study their behavior in families Xs and prove a rigidity result for the regulator image of the Tame k...

متن کامل

Milnor and Finite Type Invariants of Plat-closures

Finite type invariants of knots or links can be defined combinatorially using only link projections in S. In this setting it can be seen that every Jones-type polynomial invariant (quantum invariants) is equivalent to a sequence of finite type invariants. See [B2, BN] and references therein. Although Vassiliev’s original approach to finite type knot invariants ([V]) rests on topological foundat...

متن کامل

Motivic interpretation of Milnor K-groups attached to Jacobian varieties

In the paper [Som90] p.105, Somekawa conjectures that his Milnor Kgroup K(k, G1, . . . , Gr) attached to semi-abelian varieties G1,. . . ,Gr over a field k is isomorphic to ExtrMk (Z, G1[−1] ⊗ . . . ⊗ Gr[−1]) where Mk is a certain category of motives over k. The purpose of this note is to give remarks on this conjecture, when we take Mk as Voevodsky’s category of motives DM (k) .

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2021

ISSN: ['1090-266X', '0021-8693']

DOI: https://doi.org/10.1016/j.jalgebra.2021.02.020